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Abstract

Delgado Moya, Erick Manuel; Alonso Plata, Ricardo Jose (Advi-
sor). Mathematical Models for the Zika Epidemic. Rio de
Janeiro, 2018. 65p. Dissertação de Mestrado – Departamento de
Matemática, Pontifícia Universidade Católica do Rio de Janeiro.

The Zika Virus (ZIKV) is a virus transmitted by Aedes aegypti
mosquitoes (same as the one transmitting dengue and chikungunya fever)
and Aedes albopictus. The main way of contagion by the ZIKV is caused
by the bite of a mosquito that, after feeding from someone contaminated,
can transport the ZIKV throughout its life, transmitting the disease to a
population that does not have the immunity. It can also be transmitted
through a person’s sexual relationship with ZIKV to their partners, even
if the infected person does not have the symptoms of the disease. In this
work, we present two mathematical models for the ZIKV epidemic by using
(1) ordinary differential equations and, (2) ordinary differential equations
with temporal delay, which is the time it takes mosquitoes to develop the
virus. We make a comparison between the two modeling variants and, to
facilitate the work with the models, we provide a graphical user interface.
Computational simulations are performed for Suriname and El Salvador,
which are countries that are prone to develop the epidemic in an endemic
manner. In order to study the spatial diffusion of ZIKV, we propose a model
based on advection-diffusion equations and create a numerical scheme with
finite elements and finite differences to resolve it.

Keywords
Control; Ordinary differential equations; Models; Delay; Transmis-

sion; ZIKV.
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Resumo

Delgado Moya, Erick Manuel; Alonso Plata, Ricardo Jose. Mode-
los Matemáticos para a Epidemia do Zika. Rio de Janeiro,
2018. 65p. Dissertação de Mestrado – Departamento de Matemá-
tica, Pontifícia Universidade Católica do Rio de Janeiro.

Zika Vírus (ZIKV) é um vírus transmitido pelos mosquitos Aedes
aegypti (mesmo transmissor da dengue e da febre chikungunya) e o Aedes
albopictus. O contágio principal pelo ZIKV se dá pela picada do mosquito
que, após se alimentar do sangue de alguém contaminado, pode transportar
o ZIKV durante toda a sua vida, transmitindo a doença para uma popu-
lação que não possui anticorpos contra ele. Também pode ser transmitido
através de relação sexual de uma pessoa com Zika para os seus parceiros
ou parceiras, mesmo que a pessoa infectada não apresente os sintomas da
doença.Neste trabalho, apresentamos dois modelos matemáticos para a epi-
demia do ZIKV usando (1) equações diferenciais ordinárias e (2) equações
diferenciais ordinárias com atraso temporal, que é o tempo que os mosqui-
tos levam para desenvolver o vírus. Fazemos uma comparação entre as duas
variantes de modelagem e, para facilitar o trabalho com os modelos, forne-
cemos uma interface gráfica com o usuário. Simulações computacionais são
realizadas para o Suriname e El Salvador, que são países propensos a de-
senvolver a epidemia de maneira endêmica. Para estudar a difusão espacial
do ZIKV, propomos um modelo baseado em equações de advecção-difusão
e criamos um esquema numérico com elementos finitos e diferenças finitas
para resolvê-lo.

Palavras-chave
Controle; Equações diferencias ordinárias; Modelos; Retardo;

Transmissão; ZIKV.
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1
Introduction

1.1
Preliminars ZIKV

Zika fever (also known as Zika virus disease) is an illness caused by the
Zika virus. The disease is spread through the bite of daytime-active Aedes
mosquitoes such as the A. aegypti and A. albopictus (these are the same
mosquitoes that spread dengue and chikungunya viruses). Its name comes
from Zika forest in Uganda, where the virus was first isolated from a rhesus
monkey in 1947. The first human cases were reported in Nigeria in 1954. The
first documented outbreak among people occurred in 2007, in the Federated
State of Micronesia [28].
The disease of Zika virus is transmitted from infected Aedes mosquitoes to
humans through mosquito bites [16]. It can also be transmitted from human
to human through the blood and semen of an infected human, and through an
infected pregnant woman to the foetus. Zika is a cause of microcephaly and
other severe brain defects [6]. The incubation period (the time from exposure
to symptoms) of Zika virus disease is not clear, but is likely to be a few days to
a week. The symptoms are similar to other arbovirus infection such as dengue,
and include fever, skin rashes, conjunctivitis (red eyes), muscle and joint pain,
malaise and headache. These symptoms are usually mild and usually last from
2- 7 days [16].
There is no specific treatment or vaccine currently available for Zika virus
disease. Prevention and control relies on reducing mosquitoes through source
reduction (removal and modification of breeding sites), and reducing contacts
between mosquitoes and people.

The use of ODE (ordinary differential equation) and ODE with delay
in the study of epidemics can be seen in [2, 21], for Dengue in [19, 35], for
HIV/AIDS in [1, 39], for Ebola in [4, 13] and ZIKA in [6, 28, 33]. The use
of advection-diffusion equations in the study of epidemics can be found in
[22, 29], in particular for Dengue [23, 26, 36], for HIV / AIDS in [20, 31] and
for Malaria in [25] these texts contributed to the background of this work.

The objective of this work is to present mathematical models for the
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Chapter 1. Introduction 13

transmission and diffusion of the ZIKV, using classical ordinary differential
equations, with discrete time delay and advesion-diffusion equations, these
models take into account sexual transmission and are stratified by sex and
help take into account most of the epidemic’s contagion.

1.2
Dissertation Outline

This dissertation is organized in six chapters. Chapter 1 presents the
general information regarding the ZIKV. Chapter 2 contains the definitions,
theorems and methods development of the dissertation.
In Chapter 3 we present two mathematical models for ZIKV and perform
computational experiments for Suriname and El Salvador.
Chapter 4 contains a model to study the diffusion of the ZIKV and a numerical
scheme is proposed to resolve it. And as a future work, we have the study of
the model and computational experimentation.
Chapter 5 has a graphical user interface that allows to work with the model
more easily and quickly.
Chapter 6 contains the enunciate and demonstration de lemmas use in the
dissertation.
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2
Background

In this chapter, we present the basic theory of ordinary differential
equation [7, 8, 27], ordinary differential equation with delay [3, 18], finite
element method [9] and Crank-Nicolson method [10] of finite difference, used
in the development of work.
We define the basic reproductive number (<0) and its relation to local stability
at the disease-free equilibrium [14, 17].

2.1
Differential Ordinary Equation

Existence and Uniqueness of Solution

Theorem 2.1. (Existence and Uniqueness Theorem)
Let:

x
′

1 = f1(x1, x2, ..., xn, t), x1(t0) = x10

x
′

2 = f2(x1, x2, ..., xn, t), x2(t0) = x20

...

x
′

n = fn(x1, x2, ..., xn, t), xn(t0) = xn0. (2.1)

Suppose D is the region in (n+1)-dimensional space (one dimension for t and
n dimension for the vector x). If the partial derivative ∂fi

∂xj
, i, j = 1, 2, ..., n

are continuous in

D = {(x, t) : |t− t0| ≤ a, |x− x0| ≤ b},

then there is a constant δ > 0 such that exists a unique continuous vector
solution x = [x1(t), x2(t), ..., xn(t)] in the interval |t− t0| ≤ δ.

The enunciate and the proof of this theorem is in [13].
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Chapter 2. Background 15

2.2
Differential Equation with Delay

Delay differential equations (DDEs) are a type of differential equation in
which the derivative of the unknown function at a certain time is given in terms
of the values of the function at previous times. DDEs are also called time-delay
systems, systems with after effect or dead-time, hereditary systems, equations
with deviating argument, or differential-difference equations. They belong to
the class of systems with the functional state, partial differential equations
(PDEs) which are infinite dimensional, as opposed to ordinary differential
equations (ODEs) having a finite dimensional state vector.

Existence of Solution

Consider the nonlinear delay differential equation

x
′(t) = f(t, x(t), x(t− r)) (2.2)

with a single delay r > 0. Assume that f(t, x, y) and fx(t, x, y) are continuous
on R3. Let s ∈ R be given and let φ : [s− r, s]→ R be continuous. We seek a
solution x(t) of (2.2) satisfying

x(t) = φ(t), s− r ≤ t ≤ s (2.3)

and satisfying (2.2) on s ≤ t < s + p for some p > 0. Note that we must
interpret x′(s) as the right-hand derivative at s.
The equation (2.2) can be solved by the method of steps as follows. For
s ≤ t ≤ s+ r, x(t) must satisfy the initial-value problem for the ODE:

y
′(t) = f(t, y(t), φ(t− r), y(s)), y(s) = φ(s), s ≤ t ≤ s+ r.

As e(t, y) = f(t, y(t), φ(t − r)) and ey(t, y) (derivative respect to y) are
continuous, a local solution of this ODE is guaranteed by standard results from
ODE theory. If this local solution x(t) exists for the entire interval s ≤ t ≤ s+r,
then our solution x(t) is defined so far on [s− r, s+ r] and we may repeat the
above argument to extend our solution still father to the right. Indeed, for
s+ r ≤ t ≤ s+ 2r, a solution x(t) of (2.2)-(2.3) must satisfy the initial value-
problem for the ODE:

y
′(t) = f(t, y(t), φ(t− r), y(s+ r)) = x(s+ r), s+ r ≤ t ≤ s+ 2r.

Again, standard existence results for such problems guarantee the ex-
istence of a unique solution, which we call x(t), defined on some subinterval
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Chapter 2. Background 16

[s + r, p) ⊂ [s + r, s + 2r], possibly the entire interval. Of course, x(t), now
defined on [s− r, p) where p > s+ r, is a solution of (2.2)-(2.3). If the solution
exists on the entire interval [s+r, s+2r] then we may again repeat the process
to extend the solution to [s+ 2r, s+ 3r], or some subinterval of this interval.

Theorem 2.2. Let f(t, x, y) and fx(t, x, y) be continuous on Rn, s ∈ R, and
let φ : [s − r, s] → R be continuous. Then there exists p > s and a unique
solution of the initial-value problem (2.2)-(2.3) on [s− r, p].

The enunciate and proof is in [18].
The Theorem 2.2 provides only a local solution. Just as for ODEs, we can
often, but not always, extend this solution to be defined for all t ≥ s.
The next result shows that if a noncontinuable solution is not defined for all
t ≥ s − r, then it must blow up as t → p. This is the same conclusion as for
the ODE theory; in fact that theory proves the result.

Theorem 2.3. Let f satisfy the hypotheses of Theorem 2.2 and let x :
[s − r, p) → R be the noncontinuable solution of the initial- value problem
(2.2)-(2.3). If p <∞ then

lim
t→p−

|x(t)| =∞.

Proof. Let x : [s− r, p)→ R be the noncontinuable solution and suppose that
p < ∞. Then s + jr < p ≤ s + (j + 1)r for some j ∈ {0, 1, 2, ..., } so the
restriction of x(t) to the interval [s + rj, p) is necessarily the noncontinuable
solution of the initial-value problem for the ODE:

y
′ = f(t, y(t), x(t− r), y(s+ jr)) = x(s+ jr)

inasmuch as any extension of it would give an extension of x(t) as a solution
of (2.2)- (2.3). But then the result follows from the continuation theorem for
ODEs.

Positivity of Solution

Theorem 2.4. Suppose that f : R × Rn
+ × Rn

+ → Rn satisfies the hypotheses
of Theorem 2.2 and

∀i, t,∀x, y ∈ Rn
+ : xi = 0⇒ fi(t, x, y) ≥ 0.

If the initial data φ in (2.3) satisfy φ ≥ 0, then the corresponding solution x(t)
of (2.2) satisfies x(t) ≥ 0 for all t ≥ s where it is defined, see [18].
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Proof. Recall that the analogous result for ODEs x
′ = g(t, x) where g :

R × Rn
+ → Rn requires g to satisfy gi(t, x) ≥ 0 whenever x ∈ Rn

+ satisfies
xi = 0.
Let x(t) denote the solution of (2.2)-(2.3). On the interval s ≤ t ≤ s+ r, x(t)
satisfies the ODE x

′(t) = g(t, x(t)) where g(t, x) = f(t, x, φ(t− r)). g is easily
seen to satisfy the conditions in the previous paragraph and hence x(t) ≥ 0 on
the interval s ≤ t ≤ s+r. Now one just repeats the argument using the method
of steps.

Proposition 2.1. If x : [p − r, p + a] → Rn is continuous, then t → xt is a
continuous function from [p, p+ a] into C([−r, 0],Rn), refer to [18].

Proof. As x is uniformly continuous on the closed, bounded interval I =
[p − r, p + a], given ε > 0, ∃δ > 0, such that t, s ∈ I, |t − s| < δ

⇒ |x(t)− x(s)| < ε. This implies that

|xt(σ)− xs(σ)| = |x(t+ σ)− x(s+ σ)| < ε

for σ ≤ t, s ≤ σ + a with |t− s| < δ and −r ≤ σ ≤ 0, proving the result.

Small Delays are Harmless

Consider the linear delay system

x
′(t) = Ax(t)−Bx(t− r)

and its nondelayed counterpart obtained by setting r = 0,

x
′(t) = (A+B)x(t).

We want to explore the correspondence of the characteristic roots of

h(λ, r) = det[λI − A− exp(−λr)B] = 0 (2.4)

to the eigenvalues of A+B:

h(λ, 0) = det[λI − (A+B)] = 0.

Proposition 2.2. Given σ ∈ R, there are at most finitely many characteristic
roots satisfying <(λ) > ω. If there are infinitely many distinct characteristic
roots {λn}n [18], then

R(λn)→ −∞, n→∞
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Theorem 2.5. Let z1, z2, ..., zk be the distinct eigenvalues of A+B let δ > 0,
and let s ∈ R satisfy s < mini<(zi). Then there exists r0 > 0 such that if
0 < r < r0 and h(z, r) = 0 for some z then either <(z) < s or |z − zi| < δ for
some i, see [18].

Proof. Let G = {z ∈ C : <(z) ≥ s, |z−zi| ≥ δ, 1 ≤ i ≤ k}. Our goal is to show
that there are no characteristic roots in the closed set G if r is small enough.
If this were false, then there exists a sequence {rn}n of delay with rn > 0 and
rn → 0 and a corresponding sequence of characteristic roots zn ∈ G so that
h(zn, rn) = 0. By the Bolzano-Weierstrass theorem there are two cases:

1. {zn} has a convergent subsequence converging to z∗ ∈ G (G is closed).

2. |zn| → ∞.

In case 1, continuity of h implies that h(z∗, 0) = 0 but A + B has no
eigenvalues in G. This case cannot occur. We conclude that case 2. must
hold. Now we argue exactly as in the proof of Proposition (2.2) that Cn =
I − 1

zn
[A + exp(−znrn)B] → I because <(zn) ≥ s and |zn| → ∞ so it cannot

be singular for larger n. This contradiction proves the result.

Small delays are harmless in the sense that if asymptotic stability holds
when τ = 0, then it continues to hold for small delays inasmuch as we may
choose δ small enough that δ- ball about each eigenvalues of A + B belongs
to the left half- plane and we may choose s negative. On the other hand, if
instability holds for τ = 0 due to a simple positive root or a complex conjugate
pair of roots with positive real part, then the implicit function theorem may
be applied to show that instability continues to hold for small r > 0.

2.3
Basic Reproduction Number (<0)

The basic reproduction number <0 is arguably the most important
quantity in infectious disease epidemiology. It is among the qualities most
urgently estimated for emerging infectious diseases in outbreak situations, and
its value provides insight when designing control interventions for established
infections. From a theoretical point of view <0 plays a vital role in the analysis
of, and consequent insight from, infectious disease models. <0 is defined as the
average number of an infection caused by one typical infected individual, in a
population consisting of susceptible only [17].
It has been shown that <0 is mathematically characterized by regarding
infection transmission as a demographic process, where producing offspring
is not seen as giving birth in the demographic sense, but as causing a new
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infection through transmission. In a natural way, this leads to viewing the
infection process in terms of consecutive generations of infected individuals, in
complete analogy to demographic generations. Subsequent generations growing
in size then indicate a growing population, and the growth factor per generation
indicates the potential for growth. In a natural way, this growth factor is then
the mathematical characterization of <0.
If 0 < <0 < 1 the infection will die out in the long run. But if <0 > 1 the
infection will be able to spread in a population [17].
Generally, the larger the value of <0, the harder it is to control the epidemic.
The basic reproduction number is affected by several factors including the
duration of infectivity of affected patients, the infectiousness of the organism,
and the degree of contact between the susceptible and affected populations.
To calculate <0 one begins with those equations of the ODE system that
describe the production of new infections and changes in state among infected
individuals. We will refer to the set of such equations as the infected subsystem.
The first step is to linearize the infected subsystem of nonlinear ODEs about
the infection-free steady state that, as a rule, exists. Epidemiologically, the
linearization reflects that <0 characterizes the potential for initial spread of
an infectious agent when it is introduced into a fully susceptible population
and that we assume that the change in the susceptible population is negligible
during the initial spread. This linearized infected subsystem is the starting
point of our calculations.

The relationship between <0 and local stability in disease-free point

The basic reproduction number cannot be determined from the structure
of the mathematical model alone, but depends on the definition of infected and
uninfected compartments. We define Xs to be the set of all disease free states.
That is

Xs = {x ≥ 0|xi = 0, i = 1, ...,m}.

Let Ti(x) be the rate of appearance of new infections in compartment i,
Σ+
i (x) be the rate of transfer of individuals into compartment i by all other

means, and Σ−i (x) be the rate of transfer of individuals out of compartment i.
It is assumed that each function is continuously differentiable at least twice in
each variable. The disease transmission model consists of non- negative initial
conditions together with the following system of equations:

x
′ = Ti(x)− Σi(x) = fi(x), i = 1, ..., n, (2.5)

where Σi = Σ−i − Σ+
i and the functions satisfy assumptions described below:
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(P1) Since each function represents a directed transfer of individuals, they are
all non-negative.
If x ≥ 0, then Ti,Σ−i ,Σ+

i ≥ 0 for i = 1, ...,m.

(P2) If a compartment is empty, then there can be no transfer of individuals
out of the compartment by death, infection, nor any other means. Thus,
if x0 = 0 then Σ−i (x) = 0.

(P3) The incidence of infection for uninfected compartments is zero.
Ti = 0 if i > m.

(P4) There is no (density independent) immigration of infectives. This condi-
tion is stated as follows:
If x ∈ Xs then Ti(x) = 0 and Σ+

i (x) = 0 for i = 1, ...,m.

(P5) Consider a population near the equilibrium disease-free point x0. If the
population remains near the x0 ( if the introduction of a few infective
individuals does not result in an epidemic) then the population will
return to the x0 according to the linearized system

x
′ = Df(x0)(x− x0)

where Df(x0) is the derivative ∂fi
∂xj

evaluated at the x0 (the Jacobian

matrix in x0). Here, and in what follows, some derivatives are one sided,
since x0 is on the domain boundary. We restrict our attention to systems
in which the x0 is stable in the absence of new infection. That is,
If T (x) is set to zero, then all eigenvalues of Df(x0) have negative real
parts.

The conditions listed above allow us to partition the matrix Df(x0) as
shown by the following lemma.

Lemma 2.1. If x0 is a the equilibrium disease-free point of system (2.5) and
fi(x) satisfies (P1)- (P5), then derivatives DT (x0) and DΣ(x0) are partitioned
as

DT (x0)
 T 0

0 0



DΣ(x0)
 Σ 0
J3 J4


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where T and Σ are the m × m matrices defined by T =
[
∂Ti
∂xj

]
, Σ =

[
∂Σi

∂xj

]
with 1 ≤ i, j ≤ m. Further, T is non-negative, Σ is a non-singular M-matrix1

and all eigenvalues of J4 have positive real part.

The enunciate and proof is in [14].
To interpret the entries of TΣ−1 and develop a meaningful definition of <0,
consider the fate of an infected individual introduced into compartment k of
a disease-free population. The (j, k) entry of Σ−1 is the average length of time
this individual spends in compartment j during its lifetime, assuming that the
population remains near the equilibrium disease-free and barring reinfection.
The (i, j) entry of T is the rate at which infected individuals in compartment j
produce new infections in compartment i. Hence, the (i, k) entry of the product
TΣ−1 is the expected number of new infections in compartment i produced by
the infected individual originally introduced into compartment k. We call TΣ−1

the next generation matrix for the model and set

<0 = ρ(−TΣ−1)

where ρ(A) denotes the spectral radius of a matrix A.
The following theorem shows the relationship between the <0 and the local
stability in x0.

Theorem 2.6. Consider the disease transmission model given by (2.5) and
fi(x) satisfies (P1)- (P5). If x0 is the equilibrium disease-free point of the
model, the x0 is locally asymptotically stable if <0 < 1, but unstable if <0 > 1
with <0 = ρ(−TΣ−1).

Proof. Let J1 = T − Σ. Since Σ is non-singular M-matrix and T is non-
negative, −J1 = Σ− T , has the Z sign pattern2. Thus,

s(J1) < 0⇔ −J1 is a non- singular matrix,

where s(J1) denotes the maximum real part of all the eigenvalues of the matrix.
Since TΣ−1 is non-negative −J1Σ−1 = I − TΣ−1 also has the Z sign pattern.
For the Lemma 6.2 with H = Σ and B = −J1 = Σ− T ,

−J1 is a non-singular M-matrix ⇐⇒ I − TΣ−1 is a non-singular M-matrix.
1If B= sI-P, where I is the identity matrix, P is non-negative, and s > ρ(P ) (s(A) be

the maximum real part of the eigenvalues of A (the spectral abscissa), and let ρ(A) be the
maximum modulus of the eigenvalues of A (the spectral radius)), then B is non-singular M-
matrix, if s = ρ(P ), then B is a singular M-matrix.

2A matrix B = [bij ] has the sign pattern if bij ≤ 0 for all i 6= j.
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Finally, since TΣ−1 is non- negative, all eigenvalues of TΣ−1 have magnitude
less than or equal to ρ(TΣ−1). Thus,

I − TΣ−1 is a non- singular M-matrix, ⇐⇒ ρ(TΣ−1) < 1.

Hence,

s(J1) < 0 if and only if R0 < 1.

Similarly, it follows that

s(J1) = 0⇐⇒ −J1 is a singular M-matrix,

⇐⇒ I − TΣ1 is a singular M-matrix

⇐⇒ ρ(TΣ−1) = 1

The second equivalence follows from Lemma 6.3 of Appendix, with H = Σ and
K = T . The remainder of the equivalences follows as with the non-singular
case. Hence, s(J1) = 0 if and only if <0 = 1. It follows that s(J1) > 0 if and
only if <0 > 1.
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3
Mathematical Model for ZIKV Transmission

The use of ODE (ordinary differential equation) and ODE with delay
in the study of epidemics can be seen in [2, 21], in particular for Dengue in
[19, 35], for HIV/AIDS in [1, 39], for Ebola in [4, 13] and ZIKA in [6, 28, 33],
these texts contributed as background in the work that we present.
The objective of this work is to present models for the ZIKV epidemic based
on ODE and ODE with delay. A theoretical study of the model was made and
the <0 was calculated for the sub-model with only contagion by mosquitoes
and with only sexual contagion. Computational simulations are performed in
Suriname and El Salvador, where ZIKV can become endemic. We performed
a comparison between the two variants of modeling with respect to the time
of the epidemic and the number of infected.

3.1
Model with Exposed Variable

The model variables are susceptible men Hs, susceptible women Ms,
exposed men HE, exposed women ME, infected men HI , infected women
MI , recovered men HR, recovered women MR, susceptible mosquitoes Vs and
infected mosquitoes VI . The parameters of the model are between 0 and 1 and
are described in Table (3.1).
Let:
σv : Number of times a single mosquito bites a human per unit time.
βhv : Probability of pathogen transmission from an infectious mosquito to a
susceptible human given that a contact between the two occurs.
βvh : Probability of pathogen transmission from an infectious human to a
susceptible mosquito given that a contact between the two occurs.
Nh : Represent the total population of human within the model and remain
constant.
Then [33],

βy1 = σvβhv
Nh

= βy1∗

Nh

βx = σvβvh
Nh

= βx∗
Nh
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To define βy2 and βy3 we did an analogous study but taking into account
the sexual contacts (between men and heterosexual respectively) and the
probability of infecting these contacts.

Parameters Description
βy1 The force of infection from infected mosquito to susceptible human
βy2 The force of infection from infected man to susceptible man
βy3 The force of infection from infected man to susceptible woman
βx The force of infection from infected human to susceptible mosquito
µ1, µ2, η Man, woman and mosquito natural death rates
ω1, ω2, ω3 The rate of progression of men, women and mosquitoes from the exposed state to the

infectious state
ε1, ε2 Disease-induced death rate for humans (man and woman)
r1, r2 Per capital recovery rate for humans from the infectious (man and woman)
N1 Entry rate of susceptible men
N2 Entry rate of susceptible women
N3 Entry rate of susceptible mosquitoes

Table 3.1: Description of parameters used in the model.

Figure 3.1.1: Contagion by mosquitoes.
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Figure 3.1.2: Sexual contagion.

Figure 3.1.3: Schematic Representation.
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The figure (3.1.3) is A schematic representation of model (3.1), modeling the
progression of ZIKV in human and mosquito populations. Susceptible humans
start in Hs, Ms (men and women) and move to HE and ME, the exposed
population, once infected by a mosquito carrying the virus and sexual contact.
After an intrinsic incubation period, exposed individuals become infectious
population and moves to the infectious population, HI and MI . Infectious
humans will then move to and remain in HR and MR after recovering from
the infection. The susceptible mosquitoes population is denoted Vs. After
transmission occurs from biting an infectious human, susceptible mosquitoes
transition to the exposed population, VE. The end of extrinsic incubation
period marks the exposed mosquitoes shift to the infectious class VI , where
they remain infectious until death.

For the construction of the model:

– There is immunity in the recovered state, the infected man can infect
a woman and a susceptible man (result of the study of other epidemics
that are transmitted by sexual contact).

– The death by natural causes is equal in any state, the death of mosquitoes
will be due to environmental factors because no control strategy is
applied.

– By definition epidemiological Hs,Ms, HE,ME, HI ,MI , HR,MR, Vs, VE

and VI are continue and positive or null.

The transmission dynamics of the ZIKV is modeled by the following system
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of ordinary differential equations:

dHs

dt
= N1 − βy1VIHs − βy2HIHs − µ1Hs,

dMs

dt
= N2 − βy1VIMs − βy3HIMs − µ2Ms,

dHE

dt
= βy1VIHs + βy2HIHs − (ω1 + µ1)HE ,

dME

dt
= βy1VIMs + βy3HIMs − (ω2 + µ2)ME ,

dHI

dt
= ω1HE − (ε1 + µ1 + r1)HI ,

dMI

dt
= ω2ME − (ε2 + µ2 + r2)MI ,

dHR

dt
= r1HI − µ1HR,

dMR

dt
= r2MI − µ2MR,

dVs

dt
= N3 − βxHIVs − βxMIVs − ηVs,

dVE

dt
= βxHIVs + βxMIVs − (ω3 + η)VE ,

dVI

dt
= ω3VE − ηVI . (3.1)

Initial Conditions
t ∈ [0, tf ]

Hs(0) = hs > 0 Ms(0) = ms > 0 HI(0) = hi > 0
MI(0) = mi > 0 HR(0) = hr ≥ 0 MR(0) = mr ≥ 0
HE(0) = he ≥ 0 ME(0) = me ≥ 0 Vs(0) = vs > 0
VI(0) = vi > 0 VE(0) = ve ≥ 0.

0 < N1, N2, N3, βy1 , βy2 , βy3 , βx, µ1, µ2, ω1, ω2, ω3, η, r1, r2, ε1, ε2 ≤ 1

Model Analysis

Let:
Hs +HE +HI +HR = N, (3.2)

Ms +ME +MI +MR = M, (3.3)

Vs + VE + VI = V. (3.4)
We begin by showing all feasible solutions are uniformly bounded in a proper
subset of Ω. The feasible region Ω with

Ω =
{

(Hs, HE, HI , HR,Ms,ME,MI ,MR, Vs, VI , VR) : N ≤ N1

µ1
,M ≤ N2

µ2
, V ≤ N3

η

}

Differentiating both sides of 3.2, 3.3 and 3.4 with appropriate substitutions,
we obtained the following differential equations:
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N
′ = N1 − µ1N − ε1HI ≤ N1 − µ1N (3.5)

M
′ = N2 − µ2M − ε2MI ≤ N2 − µ2M (3.6)

V
′ = N3 − ηV (3.7)

Applying Grönwall Inequality in 3.5, 3.6 and 3.7, we obtained:

N(t) ≤ N(0) exp(−µ1t) + N1

µ1
(1− exp(−µ1t)),

M(t) ≤M(0) exp(−µ2t) + N2

µ2
(1− exp(−µ2t)),

V (t) ≤ V (0) exp(−ηt) + N3

η
(1− exp(−ηt)),

where N(0), M(0) and V (0) represents the initial humans and mosquitoes
population total.
Therefore, 0 ≤ N ≤ N1

µ1
, 0 ≤ M ≤ N2

µ2
and 0 ≤ V ≤ N3

η
as t → ∞. This

implies, N1

µ1
is an upper bound for N(t), N2

µ2
is an upper bound for ,M(t)

and N3

η
is an upper bound for V (t) provided N(0) ≤ N1

µ1
, M(0) ≤ N2

µ2
and

V (0) ≤ N3

η
.

Hence, all feasible solutions of the model system (3.1) enter the region Ω which
is a positively invariant set. Thus, the system is biologically meaningful and
mathematically well-posed in the domain of Ω. In this domain, it is sufficient
to consider the dynamics of the flow generated by the model system described
by (3.1). Therefore, we summarized the results in the following lemma:

Lemma 3.1. The closed set Ω is positively invariant and attracting with
respect to the model described by 3.1.
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Theorem 3.1. (Existence and Uniqueness Theorem)
Let:

f1 = dHs

dt
= N1 − βy1VIHs − βy2HIHs − µ1Hs; Hs(0) = hs,

f2 = dMs

dt
= N2 − βy1VIMs − βy3HIMs − µ2Ms; Ms(0) = ms,

f3 = dHE

dt
= βy1VIHs + βy2HIHs − (ω1 + µ1)HE ; HE(0) = he,

f4 = dME

dt
= βy1VIMs + βy3HIMs − (ω2 + µ2)ME ; ME(0) = me,

f5 = dHI

dt
= ω1HE − (ε1 + µ1 + r1)HI ; HI(0) = hi,

f6 = dMI

dt
= ω2ME − (ε2 + µ2 + r1)MI ; MI(0) = mi,

f7 = dHR

dt
= r1HI − µ1HR; HR(0) = hr,

f8 = dMR

dt
= r2MI − µ2MR; MR(0) = mr,

f9 = dVs

dt
= N3 − βxHIVs − βxMIVs − ηVs; Vs(0) = vs,

f10 = dVE

dt
= βxHIVs + βxMIVs − (ω3 + η)VE ; VE(0) = vE ,

f11 = dVI

dt
= ω3VE − ηVI ; VI(0) = vI . (3.8)

D= {(Hs,Ms, HE,ME, HI ,MI , HR,MR, Vs, VE, VI) : |t− t0| ≤ a,

|Hs − hs| ≤ b, |MS −ms| ≤ c, |HI − hi| ≤ d, |MI −mi| ≤ e, |HR − hr| ≤ f,

|MR − mr| ≤ g, |HE − he| ≤ h, |ME − me| ≤ i, |Vs − vs| ≤ j, |VE − ve| ≤
k,|VI − vi| ≤ l} then the system (3.8) has a unique solution.

Proof. We calculate the partial derivatives of fi, i = 1, 2, ..., 11 respect
xj = Hs,Ms, HE,ME, HI ,MI , HR,MR, Vs, VE, VI , and evaluate at the origin:
∂f1

∂Hs

= −µ1,
∂f1

∂Ms

= ∂f1

∂HE

= ∂f1

∂ME

= ∂f1

∂HI

= ∂f1

∂MI

= ∂f1

∂HR

= ∂f1

∂MR

=
∂f1

∂Vs
= ∂f1

∂VE
= ∂f1

∂VI
= 0.

∂f2

∂Hs

= −µ2,
∂f2

∂Ms

= ∂f2

∂HE

= ∂f2

∂ME

= ∂f2

∂HI

= ∂f2

∂MI

= ∂f2

∂HR

= ∂f2

∂MR

=
∂f2

∂Vs
= ∂f2

∂VE
= ∂f2

∂VI
= 0.

∂f3

∂HE

= −(ω1 + µ1), ∂f3

∂Hs

= ∂f3

∂Ms

= ∂f3

∂ME

= ∂f3

∂HI

= ∂f3

∂MI

= ∂f3

∂HR

=
∂f3

∂MR

= ∂f3

∂Vs
= ∂f3

∂VE
= ∂f3

∂VI
= 0.

∂f4

∂ME

= −(ω2 + µ2), ∂f4

∂Hs

= ∂f4

∂Ms

= ∂f4

∂HE

= ∂f4

∂HI

= ∂f4

∂MI

= ∂f4

∂HR

=
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∂f4

∂MR

= ∂f4

∂Vs
= ∂f4

∂VE
= ∂f4

∂VI
= 0.

∂f5

∂HI

= −(ε1 + µ1 + r1), ∂f5

∂HE

= ω1,
∂f5

∂Hs

= ∂f5

∂Ms

= ∂f5

∂ME

= ∂f5

∂MI

=
∂f5

∂HR

= ∂f5

∂MR

= ∂f5

∂Vs
= ∂f5

∂VE
= ∂f5

∂VI
= 0.

∂f6

∂ME

= ω2,
∂f6

∂MI

= −(ε2 + µ2 + r2), ∂f6

∂Hs

= ∂f6

∂Ms

= ∂f6

∂HE

= ∂f6

∂HI

=
∂f6

∂HR

= ∂f6

∂MR

= ∂f6

∂Vs
= ∂f6

∂VE
= ∂f6

∂VI
= 0.

∂f7

∂HI

= r1,
∂f7

∂HR

= −µ1,
∂f7

∂Hs

= ∂f7

∂Ms

= ∂f7

∂HE

= ∂f7

∂ME

= ∂f7

∂MI

=
∂f7

∂MI

= ∂f7

∂Vs
= ∂f7

∂VE
= ∂f7

∂VI
= 0.

∂f8

∂MI

= r2,
∂f8

∂MR

= −µ2,
∂f8

∂Hs

= ∂f8

∂Ms

= ∂f8

∂HE

= ∂f8

∂ME

= ∂f8

∂HI

=
∂f8

∂HR

= ∂f8

∂Vs
= ∂f8

∂VE
= ∂f8

∂VI
= 0.

∂f9

∂Vs
= −η, ∂f9

∂Hs

= ∂f9

∂Ms

= ∂f9

∂HE

= ∂f9

∂ME

= ∂f9

∂HI

= ∂f9

∂MI

= ∂f9

∂HR

=
∂f9

∂MR

= ∂f9

∂VE
= ∂f9

∂VI
= 0.

∂f10

∂VE
= −(ω3 + η), ∂f10

∂Hs

= ∂f10

∂Ms

= ∂f10

∂HE

= ∂f10

∂ME

= ∂f10

∂HI

= ∂f10

∂MI

=
∂f10

∂HR

= ∂f10

∂MR

= ∂f10

∂Vs
= ∂f10

∂VI
= 0.

∂f11

∂VE
= ω3,

∂f11

∂VI
= −η, ∂f11

∂Hs

= ∂f11

∂Ms

= ∂f11

∂HE

= ∂f11

∂ME

= ∂f11

∂HI

=
∂f11

∂MI

= ∂f11

∂HR

= ∂f11

∂MR

= ∂f11

∂Vs
= 0.

Therefore
∣∣∣∣∣ ∂fi∂xj

∣∣∣∣∣ are continuous and bounded. Hence, following [11] of Theorem

2.1 above, the problem 3.8 has a unique solution and do the model 3.1 is both
epidemiologically feasible and mathematically well posed.
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<0 and Local Stability
The disease-free equilibrium of the model is given as:

v0 =
(
N1

µ1
, 0, 0, 0, N2

µ2
, 0, 0, 0, N3

η
, 0, 0

)
.

To study the <0 we will divide into two subsystems, in one the study for
only sexual contagion and the other for only contagion by mosquito bites, to
interpret their influence independently in the spread of the epidemic.

The mosquito transmission route only model is obtained by assuming that
virus is not transmitted sexually. The subsystem with only sexual contagion
is:

dHs

dt
= N1 − βy1VIHs − µ1Hs,

dMs

dt
= N2 − βy1VIMs − µ2Ms,

dHE

dt
= βy1VIHs − (ω1 + µ1)HE ,

dME

dt
= βy1VIMs +−(ω2 + µ2)ME ,

dHI

dt
= ω1HE − (ε1 + µ1 + r1)HI ,

dMI

dt
= ω2ME − (ε2 + µ2 + r2)MI ,

dHR

dt
= r1HI − µ1HR,

dMR

dt
= r2MI − µ2MR,

dVs

dt
= N3 − βxHIVs − βxMIVs − ηVs,

dVE

dt
= βxHIVs + βxMIVs − (ω3 + η)VE ,

dVI

dt
= ω3VE − ηVI . (3.9)

where:

T =



0 0 0 0 0 βy1Hs

0 0 0 0 0 0
0 0 0 0 0 βy1Ms

0 0 0 0 0 0
0 βxVs 0 βxVs 0 0
0 0 0 0 0 0


,
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Σ =



−(ω1 + µ1) 0 0 0 0 0
0 −(ε1 + r1 + µ1) 0 0 0 0
0 0 −(ω2 + µ2) 0 0 0
0 0 0 −(ε2 + r2 + µ2) 0 0
0 0 0 0 −(ω3 + η) 0
0 0 0 0 0 −η


,

are the transmission and transition matrices, see Section 2.3.
Using the methodology presented in Section 2.3 (Lemma 2.1) for v0, the
reproduction number basic is given by:

<m0 = ρ(−TΣ−1) =
√
k1 + k2, (3.10)

where
k1 = βy1N1βxN3ω1ω3

µ1η2(ω1 + µ1)(ε1 + µ1 + r1)(ω3 + η) , k2 = βy1N2βxN3ω2ω3

µ2η2(ω2 + µ2)(ε2 + µ2 + r2)(ω3 + η) .

Using Theorem 2.6 you get the following result:

Lemma 3.2. The disease-free equilibrium is locally asymptotically stable if
<m0 < 1, and unstable if <m0 > 1 for the sub-model with only mosquito
transmission.

The sexual transmission route only model is obtained by assuming that ZIKA
virus is only transmitted sexually and not through the bites of infectious
mosquitoes. The model reduces to the following:

dHs

dt
= N1 − βy2HIHs − µ1Hs,

dMs

dt
= N2 − βy3HIMs − µ2Ms,

dHE

dt
= βy2HIHs − (ω1 + µ1)HE ,

dME

dt
= βy3HIMs − (ω2 + µ2)ME ,

dHI

dt
= ω1HE − (ε1 + µ1 + r1)HI ,

dMI

dt
= ω2ME − (ε2 + µ2 + r2)MI ,

dHR

dt
= r1HI − µ1HR,

dMR

dt
= r2MI − µ2MR. (3.11)

The transmission and transition matrices are:

T =


0 βy2Hs 0 0
0 0 0 0
0 βy3Ms 0 0
0 0 0 0

 ,
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Σ =


−(ω1 + µ1) 0 0 0

0 −(ε1 + r1 + µ1) 0
0 0 −(ω2 + µ2) 0
0 0 0 −(ε2 + r2 + µ2)

 .

Using the same methodology for the previous subsystem, the number
reproduction basic is:

<s0 = ρ(−TΣ−1) = βy2N1ω1

µ1(ω1 + µ1)(ε1 + µ1 + r1) . (3.12)

Using Theorem 2.6 you get the following lemma:

Lemma 3.3. The disease-free equilibrium is locally asymptotically stable if
<s0 < 1, and unstable if <s0 > 1 for the sub-model with only sexual transmission.

3.2
Model with Temporal Delay

The mosquito becomes infected when it consumes the blood of a sick
person. Then, if the insect bites a healthy person, it transmits the virus, which
enters the bloodstream and is incubated for 3 to 12 days, until the symptom
begins appearance. The delay τ will refer to the time that the mosquito that
delays in developing the pathogen, 4 to 7 days [15, 16]. The delay is taken into
account in the infected compartment. The parameters and variables maintain
the definitions and restraints of the model 3.1.

Figure 3.2.1: Schematic Representation of Model with Temporal Delay.
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The transmission dynamics of the ZIKV taking into account the time delay is
modeled by the system of differential equations with delay following:

dHs

dt
= N1 − βy1VIHs − βy2HIHs − µ1Hs,

dMs

dt
= N2 − βy1VIMs − βy3HIMs − µ2Ms,

dHI

dt
= βy1VI(t− τ)Hs + βy2HIHs − (µ1 + r1 + ε1)HI ,

dMI

dt
= βy1VI(t− τ)Ms + βy3HIMs − (µ2 + r2 + ε2)MI ,

dHR

dt
= r1HI − µ1HR,

dMR

dt
= r2MI − µ2MR,

dVs

dt
= N3 − βxHIVs − βxMIVs − ηVs,

dVI

dt
= βxHIVs + βxMIVs − ηVI . (3.13)

Initial Conditions
Hs(0) = hs > 0 Ms(0) = ms > 0 HI(0) = hi > 0
MI(0) = mi > 0 HR(0) = hr ≥ 0 MR(0) = mr ≥ 0
Vs(0) = vs > 0 VI(0) = vi > 0.

[−τ, 0]→ R+, τ > 0

Model Analysis

Let f(t, x, y) = (F1(t, x, y), F2(t, x, y), ..., F8(t, x, y)),
x = (Hs,Ms, HI ,MI , HR,MR, Vs, VI) and y = VI(t− τ).
VI(t− τ) is continue and positive for epidemiological definition.
Where:
F1(t, x, y) = N1 − βy1VIHs − βy2HIHs − µ1Hs,

F2(t, x, y) = N2 − βy1VIMs − βy3HIMs − µ2Ms,

F3(t, x, y) = βy1VI(t− τ)Hs + βy2HIHs − (µ1 + r1 + ε1)HI ,

F4(t, x, y) = βy1VI(t− τ)Ms + βy3HIMs − (µ2 + r2 + ε2)MI ,

F5(t, x, y) = r1HI − µ1HR,

F6(t, x, y) = r2MI − µ2MR,

F7(t, x, y) = N3 − βxHIVs − βxMIVs − ηVs,
F8(t, x, y) = βxHIVs + βxMIVs − ηVI .

Fi(t, x, y), i = 1, 2, .., 8 are continues, then f(t, x, y) is continue.
∂F1

∂Hs

= −βy1VI − βy2HI − µ1,
∂F1

∂HI

= −βy2Hs,
∂F1

∂VI
= −βy1Hs,

∂F1

∂Ms

= ∂F1

∂MI

= ∂F1

∂HR

= ∂F1

∂MR

= ∂F1

∂Vs
= 0.
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∂F2

∂Ms

= −βy1VI − βy3HI − µ2,
∂F2

∂HI

= −βy3Ms,
∂F2

∂VI
= −βy1Ms,

∂F2

∂Hs

= ∂F2

∂MI

= ∂F2

∂HR

= ∂F2

∂MR

= ∂F2

∂Vs
= 0.

∂F3

∂Hs

= βy1VI(t− τ) + βy2HI ,
∂F3

∂HI

= βy2Hs − (µ1 + r1 + ε1),
∂F3

∂Ms

= ∂F3

∂MI

= ∂F3

∂HR

= ∂F3

∂MR

= ∂F3

∂Vs
= 0, ∂F3

∂VI
= 0.

∂F4

∂Ms

= βy1VI(t − τ) + βy3HI ,
∂F4

∂HI

= βy3Ms,
∂F4

∂MI

= −(µ2 + r2 + ε2),
∂F4

∂Hs

= ∂F4

∂HR

= ∂F4

∂MR

= ∂F4

∂Vs
= ∂F4

∂VI
= 0.

∂F5

∂HI

= r1,
∂F5

∂HR

= −µ1,

∂F5

∂Hs

= ∂F5

∂MI

= ∂F5

∂Ms

= ∂F5

∂MR

= ∂F5

∂VI
= 0.

∂F6

∂MI

= r2,
∂F6

∂MR

= −µ2,

∂F6

∂Hs

= ∂F6

∂Ms

= ∂F6

∂HI

= ∂F6

∂HR

= ∂F6

∂Vs
= ∂F6

∂VI
= 0.

∂F7

∂HI

= −βxVs,
∂F7

∂MI

= −βxVs,
∂F7

∂Vs
= −βxHI − βxMI − η,

∂F7

∂Hs

= ∂F7

∂Ms

= ∂F7

∂HR

= ∂F7

∂MR

= ∂F7

∂VI
= 0.

∂F8

∂HI

= βxVs,
∂F8

∂MI

= βxVs,
∂F8

∂Vs
= βx(HI +MI),

∂F8

∂VI
= −η,

∂F8

∂Hs

= ∂F8

∂Ms

= ∂F8

∂HR

= ∂F8

∂MR

= 0.

(Fi)x i = 1, 2, ..., 8 are continues then fx is continue.
The initial conditions are continuous and positive according to the epidemio-
logical definition (number of people), so by Theorem 2.2 the solution of the
model is unique.

F1(0,Ms, HI ,MI , HR,MR, Vs, VI) = N1 > 0,
F2(Hs, 0, HI ,MI , HR,MR, Vs, VI) = N2 > 0,
F3(Hs,Ms, 0,MI , HR,MR, Vs, VI) = βy1VI(t− τ)Hs ≥ 0,
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F4(Hs,Ms, HI , 0, HR,MR, Vs, VI) = βy1VI(t− τ)Ms + βy3HIMs ≥ 0,
F5(Hs,Ms, HI ,MI , 0,MR, Vs, VI) = r1HI ≥ 0,
F6(Hs,Ms, HI ,MI , HR, 0, Vs, VI) = r2MI ≥ 0,
F7(Hs,Ms, HI ,MI , HR,MR, 0, VI) = N3 > 0,
F8(Hs,Ms, HI ,MI , HR,MR, Vs, 0) = βxVs(HI +MI) ≥ 0.

By Theorem 2.4 the solution of the model is positive.

3.3
Numerical Simulations

The objective of this subsection is to compare the two modeling tech-
niques, with respect to the behavior of infected humans. Computational ex-
perimentation was carried out for Suriname and El Salvador because they are
countries with characteristics that the ZIKV can become an endemic prob-
lem. The values of the parameters and initial conditions for each country
and their origin are presented in the Tables 3.2, 3.3 and 3.4 and the de-
lay (τ) is equal to 7 days . It was used for the codes Matlab2017a and
to solve the system of ordinary differential equations, an adaptation of the
ODE45, which is based on an explicit Runge-Kutta formula, the Dormand-
Prince pair. It is a one-step solver –for the solution in moment n , it needs
only the solution at the immediately preceding time point, n − 1. In gen-
eral, ode45 is the best function to apply as a first try for most problems
(https://www.mathworks.com/help/matlab/ref/ode45.html) and for the
model with temporary delay, an adaptation of the routine DDE23, it tracks
the discontinuities and integrates with the explicit pair of Runge-Kutta (2,3)
and the interpolator of ode23. It uses iteration to take steps longer than
the delays (https://www.mathworks.com/help/matlab/ref/dde23.html?s_
tid=doc_ta).

https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/matlab/ref/dde23.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/dde23.html?s_tid=doc_ta
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Parameters Value Reference
βy1 0.1705 [33]
βx 0.4352 [33]
βy2 0.003 Assumed
βy3 0.003 Assumed
ω3

1
10.2 [36]

ω1 = ω2
1
6 [6, 19]

µ1 = µ2 0.0061 https://www.indexmundi.com/g/g.aspx?c=ns&v=26&l=es

r1 = r2 0.55 Assumed
ε1 = ε2 0.0004 Assumed
η 1

18 [28]
N1 0.65 Assumed
N2 0.75 Assumed
N3 0.60 Assumed

Table 3.2: Suriname, 2016.

Parameters Value Reference
βy1 0.2808 [33]
βx 0.3053 [33]
βy2 0.005 Assumed
βy3 0.007 Assumed
ω3

1
10.2 [36]

ω1 = ω2
1
6 [6, 19]

µ1 = µ2 0.0057 https://www.indexmundi.cboom/g/g.aspx?c=es&v=26&l=es

r1 = r2 0.75 Assumed
ε1 = ε2 0.0004 Assumed
η 1

18 [28]
N1 0.65 Assumed
N2 0.75 Assumed
N3 0.60 Assumed

Table 3.3: El Salvador, 2016.

Variables Suriname El Salvador Reference
Hs 280.298 2.982.221 https://www.datosmacro.com/demografia/poblacion/surinam

(el-salvador)
Ms 278.070 3.362.501 https://www.datosmacro.com/demografia/poblacion/el-salvador

(surinam)
HE 0 0 Assumed
ME 0 0 Assumed
HI 1000 1000 Assumed
MI 1000 1000 Assumed
HR 0 0 Assumed
MR 0 0 Assumed
Vs 44222 152362 [33]
VE 0 0 Assumed
VI 1000 1000 Assumed

Table 3.4: Initial Conditions, 2016.

https://www.indexmundi.com/g/g.aspx?c=ns&v=26&l=es
https://www.indexmundi.cboom/g/g.aspx?c=es&v=26&l=es
https://www.datosmacro.com/demografia/poblacion/surinam
https://www.datosmacro.com/demografia/poblacion/el-salvador
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<0 Study
We found the <m0 for βy1∗ ∈ [0.04287, 1.1241] (95 % CI) in Suriname and

βy1∗ ∈ [0.0119, 0.9244] (95% CI) in El Salvador, the data is extracted from
[33]. The minimum value is 3.3932 and 6.3882 for El Salvador and Suriname
respectively and shows that the infection will be able to spread in a population.
The Figure 3.3.1 show the growth of <m0 with respect to βy1 for Suriname and
El Salvador.
The value of <s0 (only with sexual contact) for Suriname and El Salvador
(for the values in the Tables 3.1, 3.2 and 3.4 ) shows that the infection will
disappear in the long term <s0 < 1. This form of contagion does not have a
great influence on the spread of the epidemic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y
1

0

5

10

15

20

25

30

 R
0

El Salvador

Figure 3.3.1: <m0

Suriname:
The model with temporal delay reports a greater number of infected

people in the period in which the epidemic has greater force than the model
with the exposed variable, see Figure 3.3.2.
During a time close to 45 days both models report the same number of infected
(for first time), see figure 3.3.3, but at the end of a year model 3.11 reports
a greater number of infected . Throughout the year, the epidemic continues,
demonstrating the endemic nature of the epidemic in this country, see Figure
3.3.4.
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Figure 3.3.2: Comparison between models. Suriname Infected.
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Figure 3.3.3: First Moment of Coincidence. Suriname infected.
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Figure 3.3.4: Infected humans at 360 days. Suriname.

El Salvador:
The asymptotic behavior of infected humans is analogous to that of

Suriname, see Figure 3.3.5. Both models report the same number of infected
(for first time) after 50 days, see figure 3.3.6 and the result obtained in the
study of <0 is verified because the ZIKV behaves as endemic, but the opposite
occurs Suriname because at the end of the period the model with delay reports
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a greater number of infected people compared to the model with an exposed
variable, see Figure 3.3.7.
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Figure 3.3.5: Comparison between models. El Salvador Infected.
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Figure 3.3.6: First Moment of Coincidence. El Salvador infected.
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Figure 3.3.7: Infected humans at 360 days. El Salvador.
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4
Preliminary work on diffusive-advective model for spatial
evolution of ZIKV epidemic

The objective of this chapter is to present a model for the Zika epidemic
based on the diffusion-advection equations. To solve this model we use a
numerical scheme based on the finite elements method (FEM) and finite
differences. The computational experimentation and the deep study of the
numerical scheme will be the objective of future works.

4.1
Background

Advection-Diffusion Equation

The advection-diffusion equation combines diffusion and advection op-
erators which describe physical phenomena where particles, energy, or other
physical quantities are transferred inside a physical system due to two pro-
cesses: diffusion and advection.
The general equation is [37]:

∂c

∂t
= ∇ · (D∇c)−∇ · (−→v c) +R (4.1)

where

– c is the variable of interest.

– D is the diffusivity (called diffusion coefficient).

– −→v is the velocity field that the quantity is moving with. It is function of
time and space.

– R describe sources or sinks of the quantity c, describes the creation or
destruction of the quantity. For example, if c is the concentration of a
molecule, then R describes how the molecule can be created or destroyed
by chemical reaction, R may be a function and of c of other parameters.

– The ∇· (D∇c) describe diffusion. The net diffusion is proportional to de
Laplacian (or second derivative) of concentration if the diffusivity D is
a constant.
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– The −∇ · (−→v c), describes advection.

Typically, the model can be simplified so that it has constant diffusion
coefficient, there are no sources of sinks, and the velocity field describes an
incompressible flow. Then the formula simplifies to:

∂c

∂t
= D∇2c−−→v · ∇c. (4.2)

The advection-diffusion equation combines both parabolic and hyperbolic
effects which make the model difficult to simulate.
The stationary advection-diffusion equation describes the steady-state behav-
ior of an advective-diffusive system. In steady-state, ∂c

∂t
= 0, so the formula is:

0 = ∇(D∇c)−∇ · (−→v c) +R. (4.3)

Galerkin Method

Galerkin methods are a class of methods for converting a continuous
operator problem (such as differential equation) to a discrete problem [9, 22,
34].
Let us introduce Galerkin’s method with an abstract problem posed as weak
formulation on a Hilbert space V, namely, find u ∈ V such that for all v ∈ V ,
a(u, v) = f(v).
Here, a(·, ·) is a bilinear form (the exact requirements on a(·, ·) will be specified
later) and f is a bounded linear functional on V .
Choose a subspace Vn ⊂ V of dimension n and solve the projected problem:
find un ∈ Vn such that for all vn ∈ Vn, a(un, vn) = f(vn). We call this the
Galerkin equation.
Notice that the equation has remained unchanged and only the spaces have
changed. Reducing the problem to a finite-dimensional vector subspace allows
us to numerically compute un as a finite linear combination of the basis vectors
in Vn.
The key property of the Galerkin approach is that the error is orthogonal to the
chosen subspaces. Since Vn ⊂ V , we can use vn as a test vector in the original
equation. Subtracting the two, we get the Galerkin orthogonality relation for
the error, εn = u − un which is the error between the solution of the original
problem u, and the solution of the Galerkin equation un,

a(εn, vn) = a(u, vn)− a(un, vn) = f(vn)− f(vn) = 0. (4.4)

Since the aim of Galerkin’s method is the production of a linear system of
equations, we build its matrix form, which can be used to compute the solution
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by a computer program.
Let e1, e2, ..., en be a basis for Vn. Then, it is sufficient to use these in turn for
testing the Galerkin equation, find un ∈ Vn such that a(un, ei) = f(ei) i =
1, 2, ..., n.
We expand un with respect to this basis, un = ∑n

j=1 ujej and insert it into the
equation above, to obtain

a
( n∑
j=1

ujej, ei
)

=
n∑
j=1

uja(ej, ei) = f(ei) i = 1, 2, ..., n. (4.5)

This previous equation is actually a linear system of equations Au = f , where

Aij = a(ej, ei), fi = f(ei).

Due to the definition of the matrix entries, the matrix of the Galerkin equation
is symmetric if and only if the bilinear form a(·, ·) is symmetric.

Finite Difference and Crank-Nicolson method

The finite difference method is one of several techniques for obtaining nu-
merical solution to partial difference equation [32]. In all numerical solutions,
the continuous partial differential equation (PDE) is replaced with a discrete
approximation. In this context, the word discrete means that the numerical so-
lution is known only at a finite number of points in the physical domain. The
number of those points can be selected by the user of the numerical method.
In general, increasing the number of points not only increases the resolution,
but also the accuracy of the numerical solution [38].
The discrete approximation results in a set of algebraic equations that are
evaluated (or solve) for the values of the discrete unknowns.
The mesh is the set of locations where the discrete solution is computed. These
points are called nodes, and if one were to draw lines between adjacent nodes
in the domain the resulting image would resemble a net or mesh. Two key
parameters of the mesh are ∆x, the local distance between adjacent points in
space, and ∆t, the local distance between adjacent time steps [38].
The core idea of the finite-difference method is to replace continuous deriva-
tives with so-called difference formulas that involve only the discrete values
associated with positions on the mesh.
Applying the finite-difference methods to a differential equation involves re-
placing all derivatives with difference formulas. In the heat equation, there are
derivatives with respect to time and derivatives with respect to space. Using
different combinations of mesh points in the difference formulas results in the
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different schemes. In the limit as the mesh spacing (∆x and ∆t) go to zero,
the numerical solution obtained with any useful scheme will approach the true
solution to the original differential equation. However, the rate at which the
numerical solution approaches the true solution varies with the scheme. In
addition, there are some practically useful schemes that can fail to yield a
solution for bad combinations of ∆x and ∆t [38].

The Discrete Mesh

The finite difference method obtains an approximate solution for ξ(x, t)
at a finite set x and t.
For uniformly spaced in the interval 0 ≤ x ≤ L such that

xi = (i− 1)∆x, i = 1, 2, ..., N

where N is the total number of spatial nodes, including, those on the boundary.
Given L and N , the spacing between the xi is computed with

∆x = L

N − 1 .

Similarly, the discrete t are uniformly spaced in 0 ≤ t ≤ tmax:

tm = (m− 1)∆t m = 1, 2, ...,M

where M is the number of time steps and ∆t is the size of a time step

∆t = tmax
M − 1 .

First Order Difference [38]

Consider a Taylor series expansion ξ(x) about the point xi

ξ(xi + ∆x) = ξ(xi) + ∆x∂ξ
∂x

∣∣∣∣∣
xi

+ (∆x)2

2
∂2ξ

∂x2

∣∣∣∣∣
xi

+ (∆x)3

3!
∂3ξ

∂x3

∣∣∣∣∣
xi

+ ... (4.6)

where δx is a change in x relative to xi. Let k = ∆x and h = ∆t and consider
the value of ξ at the location of the xi+1 mesh line

ξ(xi + k) = ξ(xi) + k
∂ξ

∂x

∣∣∣∣∣
xi

+ k2

2
∂2ξ

∂x2

∣∣∣∣∣
xi

+ k3

3!
∂3ξ

∂x3

∣∣∣∣∣
xi

+ ...
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Solve for
(
∂ξ

∂x

)
xi

,

∂ξ

∂x

∣∣∣∣∣
xi

= ξ(xi + k)− ξ(xi)
k

− k

2
∂2ξ

∂x2

∣∣∣∣∣
xi

− k2

3!
∂3ξ

∂x3

∣∣∣∣∣
xi

+ ...

Notice that the powers of ∆x multiplying the partial derivatives on the right
hand side have been reduced by one.
Substitute the approximate solution for the exact solution, use ξi ≈ ξ(xi) and
ξi+1 ≈ ξ(xi + ∆x).

∂ξ

∂x

∣∣∣∣∣
xi

≈ ξi+1 − ξi
k

− k

2
∂2ξ

∂x2

∣∣∣∣∣
xi

− k2

3!
∂3ξ

∂x3

∣∣∣∣∣
xi

+ ... (4.7)

The mean value theorem can be used to replace the higher order derivatives
(exactly)

k2

2
∂2ξ

∂x2

∣∣∣∣∣
xi

+ k3

3!
∂3ξ

∂x3

∣∣∣∣∣
xi

+ ... = k2

2
∂2ξ

∂x2

∣∣∣∣∣
σ

where xi ≤ σ ≤ xi+1. Thus

∂ξ

∂x

∣∣∣∣∣
xi

− ξi+1 − ξi
k

≈ k2

2
∂2ξ

∂x2

∣∣∣∣∣
σ

(4.8)

The term on the right-hand side of Equation (4.8) is called the truncation
error of the finite difference approximation. It is the error that results from
truncating the series in Equation (4.7).
In general, σ is not known. Note that the right-hand side of Equation (4.8)
contain the mesh parameter ∆x, which is chosen by the person using the finite
difference simulation. Since this is the only parameter under the user’s control
that determines the error, the truncation error simply written

k2

2
∂2ξ

∂x2 = O(k2).

The equals sign in this expression is true in the order of magnitude sense. In
other words the = O(k2) on the right-hand side of the expression is not a strict
equality. Rather, the expression means that the left hand side is a product of
an unknown constant and k2. Although the expression does not give us the

exact magnitude of k
2

2

(
∂2ξ

∂x2

∣∣∣∣∣
xi

)∣∣∣∣∣
σ

, it tells us how quickly that term approaches

zero as ∆x is reduced.
Using big O notation, Equation (4.7) can be written

∂ξ

∂x

∣∣∣∣∣
xi

= ξi+1 − ξi
k

+O(k) (4.9)
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The Equation (4.9) is called the forward difference formula for ∂ξ

∂x

∣∣∣∣∣
xi

because it involves nodes xi and xi+1. The forward difference approximation
has a truncation error that is O(k).
An alternative first-order finite difference formula is obtained if the Taylor
series like that in Equation (4.6) for −k. Using the discrete mesh variables in
place of all the unknowns, one obtains

ξi−1 = ξi − k
∂ξ

∂x

∣∣∣∣∣
xi

+ k2

2
∂2ξ

∂x2

∣∣∣∣∣
xi

− k3

3!
∂3ξ

∂x3

∣∣∣
x1

+ ...

Using big O notation

∂ξ

∂x

∣∣∣∣∣
xi

= ξi − ξi−1

k
+O(k) (4.10)

This is called the backward difference formula because it involves the values of
ξ at xi and xi−1.
The order of magnitude of the truncation error for the backward difference
approximation is the same as that of the forward difference approximation.
Write the Taylor series expansions for ξi+1 and ξi−1 and subtracting, then

∂ξ

∂x

∣∣∣∣∣
xi

= ξi+1 − ξi−1

2k +O(k2). (4.11)

This is the central difference approximation to ∂ξ

∂x

∣∣∣∣∣
xi

. To get good approxima-

tions to the continuous problem small k is chosen. When k ≤ 1, the truncation
error for the central difference approximation goes to zero much faster than
the truncation error backward or forward difference.
Finite difference approximations to higher order derivatives can be obtained
with the additional manipulations of Taylor series expansion about ξ(xi).

∂2ξ

∂x2

∣∣∣∣∣
xi

= ξi+1 − 2ξi + ξi−1

k2 +O(k2) (4.12)

This is also called the central difference approximation, but (obviously) it is
the approximation to the second derivative.
Approximate the time derivative in Equation (4.6) with a forward difference

∂ξ

∂t

∣∣∣∣∣
(tm+1,xi)

= ξm+1
i − ξmi

∆t +O(h). (4.13)

Note that terms on the right-hand side only involve ξ at x = xi.

Use the central difference approximation to ∂2ξ

∂x2

∣∣∣∣∣
xi

and evaluate all terms at

the time m.
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∂2ξ

∂x2

∣∣∣∣∣
xi

= ξmi−1 − 2ξmi + ξmi+1
k2 +O(k2) (4.14)

Substitute Equation (4.13) into the left-hand side of Equation (4.6); substitute
Equation (4.14) into the right-hand side of Equation (4.6); and collect the
truncation error terms to get

ξm+1
i − ξmi

h
= α

ξmi−1 − 2ξmi + ξmi+1
k2 +O(h) +O(k2) (4.15)

The temporal errors and the spatial errors have different orders. Also
notice that we can explicitly solve for ξm+1

i in terms of the other values of ξ.
Drop the truncation error terms from Equation (4.15) and solve for ξm+1

i to
get

ξm+1
i = ξmi + α

h

k2 (ξmi+1 − 2ξmi + ξmi−1). (4.16)
The Equation (4.16) is called the Forward Time, Centered Space or FTCS
approximation to the heat equation.
In the derivation of Equation (4.16), the forward difference was used to
approximate the time derivative on the left-hand side of Equation (4.6). Now,
choose the backward difference,

∂ξ

∂t

∣∣∣∣∣
(tm+1,xi)

= ξmi − ξm−1
i

h
+O(h) (4.17)

Substitute Equation (4.17) into the left hand side of Equation (4.6); substitute
Equation (4.14) into the right-hand side of Equation (4.6); and collect the
truncation error terms to get

ξmi − ξm−1
i

h
= α

ξmi−1 − 2ξmi + ξmi+1
k2 +O(h) +O(k2). (4.18)

The Equation (4.18) is called the Backward Time, Centered Space or BTCS.
The truncation errors in this approximation have the same order of magnitude
as the truncation errors in Equation (4.15).

Crank-Nicolson Method

The FTCS and BTCS schemes have a temporal truncation error
of O(∆t). When time-accurate solutions are important, the Crank-Nicolson
scheme has significant advantages. The Crank-Nicolson scheme is not signifi-
cantly more difficult to implement than the BTCS scheme, and it has a tem-
poral truncation error that is O(h2). The Crank- Nicolson scheme is implicit,
like BTCS, it is also unconditional stable.
The left-hand side of the heat equation is approximated with the backward
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time difference used in the BTCS scheme, Equation (4.17). The right-hand
side of the heat equation is approximated with the average of the central dif-
ference schema evaluated at the current and the previous time step. Thus
Equation (4.6) is approximated with

ξmi − ξm−1
i

h
= α

2

(
ξmi−1 − 2ξmi + ξmi+1

k2 + ξm−1
i−1 − 2ξm−1

i + ξm−1
i+1

k2

)
. (4.19)

Notice that values of ξ from time step m and time step m − 1 appear on the
right-hand side. Equation (4.19) is used to predict the values of ξ at time m,
so all values of ξ at time m− 1 are assumed to be known.
The Crank-Nicolson scheme is implicit, and as a result a system of equations for
the ξ must be solved at each time step, has a truncation error of O(h2)+O(k2)
[10].

4.2
Advection-Diffusion Model for spatial evolution of ZIKV epidemic

Consider S(t, x), I(t, x), and R(t, x) functions representing populations of
susceptible, infected and recovered humans at time t > 0 and location
x ∈ Ω ⊂ R2. Also, consider M(t, x) and P (t, x) the populations of susceptible
and infected mosquitoes. In this model for the ZIKV epidemic, the infection
is only due to the bites of mosquitoes infected with the virus, and it is not
necessary to stratify the population by sex. Assumptions:

– We accept immunity: from the recovered state does not possible to return
to the susceptible state.

– There is not consideration of vertical transmission in humans or
mosquitoes.

– The death by natural causes is equal in any state.

– The death of mosquitoes will be due to environmental factors because
no control strategy is applied.

– The Laplacian (∆) and the gradient (∇) operators are relative to the
spatial variable x ∈ Ω.

– Assume that the initial data are continuous and bounded functions on
Ω.
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The formulation of the model is:

∂S

∂t
−∇ · (αs∇S) +∇ · (βsS) = N1 − βy1SP − µS,

∂I

∂t
−∇ · (αI∇I) +∇ · (βII) = βy1SP − (r + ε+ µ)I,

∂R

∂t
−∇ · (αr∇R) +∇ · (βrR) = rI − µR,

∂M

∂t
−∇ · (αm∇M) +∇ · (βmM) = N4 − βxMI − ξM,

∂P

∂t
−∇ · (αp∇P ) +∇ · (βpP ) = βxMI − ξP. (4.20)

t ∈ [0, tf ],

Initial conditions:

S(0, x) = s0(x) > 0, I(0, x) = i0(x) > 0, R(0, x) = r0(x) ≥ 0,

M(0, x) = l0(x) ≥ 0, P (0, x) = p0(x) ≥ 0, x ∈ Ω.

Boundary condition (Zero influx conditions):

∂S(t, x∗)
∂η

= ∂I(t, x∗)
∂η

= ∂R(t, x∗)
∂η

= ∂M(t, x∗)
∂η

= ∂P (t, x∗)
∂η

= 0, x∗ ∈ ∂Ω.

0 < αs, αI , αr, αm, αp, βs, βI , βr, βm, βp, N1, N4, βy1 , r, µ, ε, βx, ξ ≤ 1.

The homogeneous Neumann boundary conditions mean that there is no
population flux across the boundary ∂Ω and both the human and mosquito
individuals live in a self-contained environment. The η is the outward normal
vector to ∂Ω.
The elements of the model are described in the below Table (4.1).

Parameters Description
αs Dispersion rate of susceptible humans
αI Dispersion rate of infected humans
αr Dispersion rate of recovered humans
αm Dispersion rate of susceptible mosquitoes
αp Dispersion rate of infected mosquitoes
βs Advective transport rate of susceptible humans
βI Advective transport rate of infected humans
βr Advective transport rate of recovered humans
βm Advective transport rate of susceptible mosquitoes
βp Advective transport rate of infected mosquitoes
βx The force of infection from infected human to susceptible mosquito
βy1 The force of infection from infected mosquito to susceptible human
µ , ξ Human and mosquito natural death rates
ε Disease-induced death rate for humans
r Human recovery rate
N1 Entry rate of susceptible humans
N4 Entry rate of susceptible mosquitoes

Table 4.1: Description of parameters used in the model 4.20.
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The right member of the system of equations is represented by the
following scheme:

Figure 4.2.1: Schematic representation of the diffusion model.

In Figure 4.2.1 we present a schematic interpretation of the right side of
equations 4.20 (the transmission of ZIKV in human and mosquito popula-
tions). Susceptible humans start in S and move to I, the infected population,
once infected by a mosquito carrying the virus and sexual contact. Infectious
humans will then move to and remain in R after recovering from the infection.
The susceptible mosquitoes population is denoted M. After transmission
occurs from biting an infectious human, susceptible mosquitoes transition to
the infected population, P, where they remain infectious until death. Dashed
lines represent the transition of states.)

The βs, βI and βr are the velocities field relative to the migratory move-
ment of susceptible, infected and recovered humans, respectively.
We will consider the mosquito dispersal as the result of a random (and local)
flying movement, macroscopically represented by a diffusion process with
coefficients αm and αp, coupled to a wind advection caused by a constants
velocity flux βm and βp. Constant advection can be justified as a ‘bias’ in
the transport process caused by a long-term geographical direction of the
wind, while its random and short-term fluctuations are to be included in the
diffusion term.
This model can be adapted to any epidemic transmitted by mosquitoes.
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4.3
Method of solution using FEM / Crank-Nicolson

First we find the variational formulation of the model and apply the
Galerkin method, [9, 10].
Let W = {L2([0, tf ]), V } space of solutions with V = H1(Ω) = {v ∈
L2(Ω)|∇v ∈ L2(Ω)} space of test functions and in V we define the scalar
product:

〈u, v〉 =
∫

Ω
uvdxdy, 〈∇u||∇v〉 =

∫
Ω
∇u∇vdµ

u ∈ W , v ∈ V .
Multiply by v

〈∂S
∂t
, v〉 − αs〈∆S, v〉+ βs〈∇S, v〉 = N1 −

βy1c1

V
〈SP, v〉 − µ〈S, v〉,

〈∂I
∂t
, v〉 − αI〈∆I, v〉+ βI〈∇I, v〉 = βy1c1

V
〈SP, v〉 − (ε+ µ)〈I, v〉,

〈∂R
∂t
, v〉 − αr〈∆R, v〉+ βr〈∇R, v〉 = r〈I, v〉 − µ〈R, v〉,

〈∂M
∂t

, v〉 − αm〈∆M, v〉+ βm〈∇M, v〉 = N4 −
c1βx
P
〈MI, v〉 − ξ〈M, v〉,

〈∂P
∂t
, v〉 − αp〈∆P, v〉+ βp〈∇P, v〉 = c1βx

P
〈MI, v〉 − ξ〈P, v〉.

Let U = S, I, R,M, P , U(t, x, y) = U , v = v(x, y), (x, y) ∈ Ω, by the
formula of Green

−αU〈∆U, v〉 = αU〈∇U ||∇v〉 − αU〈
∂U

∂η
, v〉.

and for border conditions, ∂U
∂η

= 0 in ∂Ω, we have

−αU〈∆U, v〉 = αU〈∇U ||∇v〉.

We write the parameters (constants) as follows:

βs = 〈βs1 , βs2〉, βI = 〈βI1 , βI2〉, βr = 〈βr1 , βr2〉, βm = 〈βm1 , βm2〉, βp = 〈βp1 , βp2〉.
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Then,

〈∂S
∂t
, v〉+ αs〈∇S||∇v〉+ βs1〈

∂S

∂x
, v〉+ βs2〈

∂S

∂y
, v〉 = N1 −

βy1c1

V
〈SP, v〉 − µ〈S, v〉,

〈∂I
∂t
, v〉+ αI〈∇I||∇v〉+ βI1〈

∂I

∂x
, v〉+ βI2〈

∂I

∂y
, v〉 = βy1c1

V
〈SP, v〉 − (ε+ µ)〈I, v〉,

〈∂R
∂t
, v〉+ αr〈∇R||∇v〉+ βr1〈

∂R

∂x
, v〉+ βr2〈

∂R

∂y
, v〉 = r〈I, v〉 − µ〈R, v〉,

〈∂M
∂t

, v〉+ αm〈∇M ||∇v〉+ βm1〈
∂M

∂x
, v〉+ βm2〈

∂M

∂y
, v〉 = N4 −

c1βx
P
〈MI, v〉 − ξ〈M, v〉,

〈∂P
∂t
, v〉+ αp〈∇P ||∇v〉+ βp1〈

∂P

∂x
, v〉+ βp2〈

∂P

∂y
, v〉 = c1βx

P
〈MI, v〉 − ξ〈P, v〉.

Let {φi}ni=1 base of Vh ⊂ V be a finite approximation of the problem. We
have to find Sj, Ij, Rj,Mj and Pj and we use the notation

Uh =
n∑
j=1

Uj(t)φj(x, y).

The respective derivatives are:

∂Uh
∂t

=
n∑
j=1

dUj
dt

φj(x, y),

∂Uh
∂x

=
n∑
j=1

Uj
∂φj
∂x

,

∂Uh
∂y

=
n∑
j=1

Uj
∂φj
∂y

.

We have the system

∑
j

dSj
dt
〈φj, v〉+ αs

∑
j

Sj〈∇φj||∇v〉+ βs1

∑
j

Sj〈
∂φj
∂x

, v〉+ βs2

∑
j

Sj〈
∂φj
∂y

, v〉 =

N1 −
βy1c1

V

∑
j

Pj
∑
k

Sk〈φjφk, v〉 − µ
∑
j

Sj〈φj, v〉,

∑
j

dIj
dt
〈φj, v〉+ αI

∑
j

Ij〈∇φj||∇v〉+ βI1

∑
j

Ij〈
∂φj
∂x

, v〉+ βI2

∑
j

Ij〈
∂φj
∂y

, v〉 =

βy1c1

V

∑
j

Pj
∑
k

Sk〈φjφk, v〉 − (µ+ ε)
∑
j

Ij〈φj, v〉,
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∑
j

dRj

dt
〈φj, v〉+ αr

∑
j

Rj〈∇φj||∇v〉+ βr1

∑
j

Rj〈
∂φj
∂x

, v〉+ βr2

∑
Rj〈

∂φj
∂y

, v〉 =

r
∑
j

Ij〈φj, v〉 − µ
∑
j

Rj〈φj, v〉,

∑
j

Mj〈φj, v〉+ αm
∑
j

Mj〈∇φj||∇v〉+ βm1

∑
j

Mj〈
∂φj
∂x

, v〉+ βm2

∑
j

Mj〈
∂φj
∂y

, v〉 =

N4 −
c1βx
P

∑
j

Ij
∑
k

Mk〈φjφk, v〉 − ξ
∑
j

Mj〈φj, v〉,

∑
j

Pj〈φj, v〉+ αp
∑
j

Pj〈∇φj||∇v〉+ βp1

∑
j

Pj〈
∂φj
∂x

, v〉+ βp2

∑
j

pj〈
∂φj
∂y

, v〉 =

c1βx
P

∑
j

Ij
∑
k

Mk〈φjφk, v〉 − ξ
∑
j

pj〈φj, v〉.

Applying v ∈ Vh we obtain the system:

∑
j

dSj
dt
〈φj, φi〉+ αs

∑
j

Sj〈∇φj||∇φi〉+ βs1

∑
j

Sj〈
∂φj
∂x

, φi〉+ βs2

∑
j

Sj〈
∂φj
∂y

, φi〉

= N1 − βy1

∑
j

Pj
∑
k

Sk〈φjφk, φi〉 − µ
∑
j

Sj〈φj, φi〉,

∑
j

dIj
dt
〈φj, φi〉+ αI

∑
j

Ij〈∇φj||∇φi〉+ βI1

∑
j

Ij〈
∂φj
∂x

, φi〉+ βI2

∑
j

Ij〈
∂φj
∂y

, φi〉

= βy1

∑
j

Pj
∑
k

Sk〈φjφk, φi〉 − (r + µ+ ε)
∑
j

Ij〈φj, v〉,

∑
j

dRj

dt
〈φj, φi〉+ αr

∑
j

Rj〈∇φj||∇φi〉+ βr1

∑
j

Rj〈
∂φj
∂x

, φi〉+ βr2

∑
Rj〈

∂φj
∂y

, φi〉

= r
∑
j

Ij〈φj, φi〉 − µ
∑
j

Rj〈φj, v〉,

∑
j

Mj〈φj, v〉+ αm
∑
j

Mj〈∇φj||∇φi〉+ βm1

∑
j

Mj〈
∂φj
∂x

, v〉+ βm2

∑
j

Mj〈
∂φj
∂y

, φi〉

= N4 − βx
∑
j

Ij
∑
k

Mk〈φjφk, φi〉 − ξ
∑
j

Mj〈φj, φi〉,

∑
j

Pj〈φj, φi〉+ αp
∑
j

Pj〈∇φj||∇φi〉+ βp1

∑
j

Pj〈
∂φj
∂x

, φi〉+ βp2

∑
j

pj〈
∂φj
∂y

, φi〉

= βx
∑
j

Ij
∑
k

Mk〈φjφk, φi〉 − ξ
∑
j

pj〈φj, φi〉.

For the temporary variables the Crank-Nicolson method (central differ-
ences in the time tn+1

2

)
was used

Uj
dt

(x, y, tn+ 1
2
) =

Un+1
j − Un

j

2 .

dUj
dt

(x, y, tn+ 1
2
) =

Un+1
j − Un

j

∆t ,
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and the scheme is, [7],

∑
j

(
Sn+1

j − Sn
j

∆t

)
〈φj , φi〉+ αs

∑
j

(
Sn+1

j + Sn
j

2

)
〈∇φj ||∇φi〉+ βs1

∑
j

(
Sn+1

j + Sn
j

2

)
〈∂φj

∂x
, φi〉

+βs2

∑
j

(
Sn+1

j + Sn
j

2

)
〈∂φj

∂y
, φi〉βs2

∑
j

(
Sn+1

j + Sn
j

2

)
〈∂φj

∂y
, φi〉 − µ

∑
j

(
Sn+1

j + Sn
j

2

)
〈φj , φi〉.

∑
j

(
In+1

j − In
j

∆t

)
〈φj , φi〉+ αI

∑
j

(
In+1

j + In
j

2

)
〈∇φj ||∇φi〉+ βI1

∑
j

(
In+1

j + In
j

2

)
〈∂φj

∂x
, φi〉

+βI2

∑
j

(
In+1

j + In
j

2

)
〈∂φj

∂y
, φi〉 = βy1

∑
j

(
Pn+1

j + Pn
j

2

)∑
k

(
Sn+1

k + Sn
k

2

)
〈φjφk, φi〉

−(r + µ+ ε)
∑

j

(
In+1

j + In
j

2

)
〈φj , φi〉.

∑
j

(
Rn+1

j −Rn
j

∆t

)
〈φj , φi〉+ αr

∑
j

(
Rn+1

j +Rn
j

2

)
〈∇φj ||∇φi〉+ βr1

∑
j

(
Rn+1

j +Rn
j

2

)
〈∂φj

∂x
, φi〉

+βr2

∑
j

(
Rn+1

j +Rn
j

2

)
〈∂φj

∂y
, φi〉 = r

∑
j

(
In+1

j + In
j

2

)
〈φj , φi〉 − µ

∑
j

(
Rn+1

j +Rn
j

2

)
〈φj , φi〉.

∑
j

(
Mn+1

j −Mn
j

∆t

)
〈φj , φi〉+ αm

∑
j

(
Mn+1

j +Mn
j

2

)
〈∇φj ||∇φi〉+ βm1

∑
j

(
Mn+1

j +Mn
j

2

)
〈∂φj

∂x
, φi〉

+βm2

∑
j

(
Mn+1

j +Mn
j

2

)
〈∂φj

∂y
, φi〉 = N4 − βx

∑
j

(
In+1

j + In
j

2

)∑
k

(
Mn+1

k +Mn
k

2

)
〈φjφk, φi〉

−ξ
∑

j

(
Mn+1

j +Mn
j

2

)
〈φj , φi〉.

∑
j

(
Pn+1

j − Pn
j

∆t

)
〈φj , φi〉+ αp

∑
j

(
Pn+1

j + Pn
j

2

)
〈∇φj ||∇φi〉+ βp1

∑
j

(
Pn+1

j + Pn
j

2

)
〈∂φj

∂x
, φi〉

+βp2

∑
j

(
Pn+1

j + Pn
j

2

)
〈∂φj

∂y
, φi〉 = βx

∑
j

(
In+1

j + In
j

2

)∑
k

(
Mn+1

k +Mn
k

2

)
〈φjφk, φi〉

−ξ
∑

j

(
Pn+1

j + Pn
j

2

)
〈φj , φi〉.

The matrix formulation for the iterative process is:

Cs(P n+1, P n)Sn+1 = Ds(P n+1, P n)Sn,

CI(c)In+1 = DI(Sn, Sn+1, P n, P n+1)In,

CR(c)Rn+1 = DR(In, In+1)Rn,

CM(In, In+1)Mn+1 = DM(In, In+1)Mn,

CP (c)P n+1 = DP (In, In+1,Mn,Mn+1)P n.

Where CI(c), CR(c) and CP (c) are matrices of constant coefficients.
Solution algorithm proposal:
To solve the system we used a predictor-corrector method, [7, 8, 32].
We start with the initial conditions (S0, I0, R0,M0, P 0), and we look for the
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first approximation (S1, I1, R1,M1, P 1).
For S∗ we solve: Cs(P 0, P 0)S∗ = Ds(P 0, P 0)S0.

Then look for I∗, CI(c)I∗ = DI(S0, S∗, P 0, P 0)I0.

We calculate R∗, CR(c)R∗ = DR(I0, I∗)R0.

We calculate M∗, CM(I0, I∗)M∗ = DM(I0, I∗)M0.

We calculate P ∗, CP (c)P ∗ = DP (I0, I∗,M0,M∗)P 0.

We obtained (S∗, I∗, R∗,M∗, P ∗).
Now, with (S0, I0, R0,M0, P 0) and (S∗, I∗, R∗,M∗, P ∗) we look for
(S∗∗, I∗∗, R∗∗,M∗∗, P ∗∗), analogously to the previous scheme.
We calculate S∗∗ solving: Cs(P 0, P ∗)S∗∗ = Ds(P 0, P ∗)S0.

We calculate I∗∗, CI(c)I∗∗ = DI(S0, S∗∗, P 0, P ∗)I0.

We calculate R∗∗, CR(c)R∗∗ = DR(I0, I∗∗)R0.

We calculate M∗∗, CM(I0, I∗)M∗∗ = DM(I0, I∗)M0.

We calculate P ∗∗, CP (c)P ∗∗ = DP (I0, I∗∗,M0,M∗∗)P 0.

We declare the conditions of convergence and we continue the process. Then,
for p ∈ N: (S1 = Sp∗, I1 = Ip∗, R1 = Rp∗,M1 = Mp∗, P 1 = P p∗). Repeat the
process for n y (Sn, In, Rn,Mn, P n) is the approximate solution of the model.
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Graphical User Interface

5.1
Graphical User Interface

The graphical user interface allows you to obtain the graphical solution
of the model 3.1 presented in chapter 3, section 3.1. Was made in Matlab
the interface presented, this allows users to use the model more quickly and
efficiently without a deep knowledge of mathematical theory. The parameters,
variables and initial conditions are maintained.
Validation of input data related to model conditions:

– The entry of the parameters are numbers and between zero and one.

– The entry of the initial conditions are numbers and greater than or equal
to zero.

– The time is number and greater than zero.

Figure 5.1.1: Graphical User Interface.

Function of buttons:

– Help: Gives a general explanation about parameter input, initial condi-
tions, and output interface.
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– Clean: Clean the entries and graphics for a new simulation.

– Infected Humans: Graphical trend for the infected population by gender.

– Comparison: Graphical comparison for infected and recovered popula-
tions by gender.

– Mosquitoes: Graphical trend of susceptible and infected mosquitoes.

The interface has included a document that has all the considerations for
the use of it.

Figure 5.1.2: Graphical User Interface, button Help.

Figure 5.1.3: Graphical User Interface, button Infected Humans.
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Figure 5.1.4: Graphical User Interface, button Comparison.

Figure 5.1.5: Graphical User Interface, button Mosquitoes.
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6
Appendix

Lemma 6.1. (The Grönwall Inequality) Let z(t) be a non-negative con-
tinuous function on [t0, t1] where t0 < t1. Assume that there are constants
C,L ≥ 0 such that

z(t) ≤ C + L
∫ t

t0
z(s)ds (6.1)

for all t ∈ [t0, t1]. Then

z(t) ≤ C exp(L(t− t0)) (6.2)

for all t ∈ [t0, t].

Proof. We can assume that C is strictly positive. Indeed, if (6.1) holds with
C = 0 then it holds with any C > 0. Therefore, (6.2) holds with any C > 0,
whence it follows that it holds with C = 0. Hence, assume in the sequel that
C > 0. This implies that the right hand side of (6.1) is positive. Set

F (t) = C + L
∫ t

t0
z(s)ds

and observe that F is differentiable and F ′ = Lz. It follows (6.1) that z ≤ F

whence F ′ = Lz ≤ LF .
This is a differential inequality for F that can be solved similarly to the
separable ODE. Since F > 0, dividing by F we obtain

F
′

F
≤ L,

whence by integration

ln F (t)
F (t0) =

∫ t

t0

F
′(s)

F (s) ≤
∫ t

t0
Lds = L(t− t0),

for all t ∈ [t0, t1]. It follows that

F (t) ≤ F (t0) exp(L(t− t0)) = C exp(L(t− t0)).

Using again (6.1), that is, z ≤ F , we obtain (6.2).
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Lemma 6.2. Let H be a non-singular M-matrix and suppose B and BH1

have the Z sign pattern, Then B is a non-singular M-matrix if and only if
BH−1 is a non- singular matrix.
The proof is in [14].

Proof. The forward implication is stated in a slightly different form [12] and
the reverse implication is stated in [4].
In general, this lemma does not hold if B a singular M−matrix. It can be
shown to hold if B is singular and irreducible.

Lemma 6.3. Let H be a non-singular M−matrix and suppose K ≥ 0. Then,

i. (H − K) is non-singular M−matrix if and only if (H − K)H−1 is a
non-singular M−matrix.

ii. (H −K) is singular M−matrix if and only if (H −K)H−1 is a singular
M−matrix.

Proof. Let B = H−K. Then both B and BH−1 = I−KH−1 have the Z sign
pattern. (Recall that H−1 ≥ 0 since H is a non-singular M−matrix). Hence,
Lemma 6.2 statement (i.). A separate continuity argument can be constructed
for each implication in the singular case.
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